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Fisheries researchers have focused on the value of information (VOI) in fisheries
management and trade-offs since scientists and managers realized that information
from different resources has different contribution in the management process. We
picked seven indicators, which are log-normal annual catch observation error (Cobs),
annual catch observation bias (Cbias), log-normal annual index observation error
(Iobs), maximum length observation bias (Linfbias), observed natural mortality rate bias
(Mbias), observed von Bertalanffy growth parameter K bias (Kbias), and catch-at-age
sample size (CAA_nsamp), and built operating models (OMs) to simulate fisheries
dynamics, and then applied management strategy evaluation (MSE). Relative yield
is chosen as the result to evaluate the contribution of the seven indicators. Within
the parameter range, there was not much information value reflected from fisheries-
dependent parameters including Cobs, Cbias, and Iobs. On the other hand, for
fisheries-independent parameters such as Kbias, Mbias, and Linfbias, similar tendency
of the information value was showed in the results, in which the relative yield goes down
from the upper bound to the lower bound of the interval. CAA_nsamp had no impact
on the yield after over 134 individuals. The VOI analysis contributes to the trade-offs in
the decision-making process. Information with more value is more worthy to collect in
case of waste of time and money so that we could make the best use of scientific effort.
But we still need to improve the simulation process such as enhancing the diversity and
predictability in an OM. More parameters are on the way to be tested in order to collect
optimum information for management and decision-making.

Keywords: value of information, fisheries management, simulation test, striped marlin, management strategy
evaluation

INTRODUCTION

Uncertainty is pervasive in natural systems and manifests itself in many forms (Morgan and
Henrion, 1990; Regan et al., 2002). The role of science in conservation and management of
natural resources is generally to reduce uncertainty (Halpern et al., 2006). In fisheries, managing
fisheries quantitatively eventually becomes a popular tendency with adaptive management
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(Hilborn and Walters, 1992). The promise of adaptive
management is that learning in the short term will improve
management in the long term, which is best kept if the focus
of learning is on those uncertainties that impede the most the
achievement of management objectives (Runge et al., 2011).

Fisheries management falls into the category of decision-
making under uncertainty due to the growth of adapted
management. Inherent in such a task is the problem of investing
in new information (Mantyniemi et al., 2009). Information
comes with a cost, basically; as a result, we should find an
optimum amount of valuable information in the decision-making
process. The cost savings from reduced information collecting
may outweigh the small potential loss in the decision accuracy of
the results (Walters and Pearse, 1996; de Bruin and Hunter, 2003;
Ling et al., 2006).

Fisheries management is plagued with various kinds of
uncertainties, but not all uncertainties are equally important
to resolve. Nevertheless, we still need a massive amount of
information to conduct our conservation and management
work. Experts in resource management continue to advocate for
more resources for information collecting to support science-
based decision-making (NOAA, 2001). This should facilitate
the consideration of trade-offs that exist between resources
allocated to information collecting and those allocated to other
management activities. Information collecting in natural resource
management can include fundamental research, monitoring,
and the analytical processing of data gathered from these tasks
(Hansen and Jones, 2008).

Unfortunately, experience with commercial fisheries
worldwide during recent decades suggests that allocating
considerable resources to data collection and stock assessments
has not prevented overexploitation and collapse (Walters and
Maguire, 1996; Pauly et al., 2002; Myers and Worm, 2003).

So we ask ourselves, is the data collecting extent not wide
enough? Is the direction of our collecting correct? Or are the
data we collected really helping with the analysis? Therefore, the
problem of the value of information (VOI) has been recognized
and discussed in basic fisheries stock assessment textbooks
(Hilborn and Walters, 1992) and journal papers (e.g., Hansen
and Jones, 2008), but examples where the VOI has been explicitly
quantified in a fisheries context are scarce (Hansen and Jones,
2008; Mantyniemi et al., 2009).

In the language of classical decision theory, there is a high
expected VOI reflected from important uncertainty. The value
of new information is the difference between the expected
value of an optimal action after the new information has been
collected and the value before the new information has been
collected. Therefore, Raiffa and Schlaifer (1961) described the
central concept through the expected value of perfect information
(EVPI):

EVPI = Es[maxaU(a, s)] −maxaEs[U(a, s)]

where U is a utility function that we want to maximize
by implementing some action a in the presence of system
uncertainty s.

Many researchers have examined the value of reducing
uncertainty or the value of increased surveys in commercial
fisheries using operating models (OMs) designed to maximize
given objectives (e.g., McAllister et al., 1999; Punt and Smith,
1999; Moxnes, 2003) by using techniques including Monte Carlo
simulations (e.g., Bergh and Butterworth, 1987; Powers and
Restrepo, 1993; Punt et al., 2002) and Bayesian approaches
(McAllister and Pikitch, 1997; McDonald and Smith, 1997).
Punt and Smith (1999) also evaluated the VOI but neglected
the parameter uncertainty and relative credibility of alternative
model structures. Quantifying the VOI is more common in
the fields of decision-making under uncertainty other than
fisheries. The concept of the VOI belongs naturally to the theory
of information economics, a branch of microeconomic theory
(Quirk, 1976). Basically, the value is understood as a measure of
the economic VOI, but there is no need to be so restrictive; any
quantitative measure of utility can be used, such as the number
of fish landed or a perception of happiness on a scale of 0–100
(Mantyniemi et al., 2009).

Ignoring the opportunity costs of information collecting can
lead to overly optimistic predictions of the value of increased
assessment effort, which occurs at the expense of various
management activities. The value of an assessment program
should be measured not by the precision of the estimates it
generates but rather in how well fishery management objectives
are met in a broader sense (Hansen and Jones, 2008). This
requires our models to approach the situation that is happening
under water as efficiently as possible. Hence, the most valuable
information should be provided in order to improve the model
fit and also make the best use of grants and funding.

As mentioned above, we conducted a study on the VOI
analysis using Indian Ocean striped marlin (Kajikia audax) as a
case study in the purpose of detecting information contribution
in management strategy evaluation (MSE) process. MSE process
was conducted within a simulation test. Meanwhile, relative yield
was used to mature the contribution of information. Striped
marlin is a common bycatch species in distant water fisheries
such as tuna longline fishery (Dai and Xu, 2007). Management of
bycatch species especially data-limited species is fairly necessary,
and information value will provide valuable guidance to data
collection for researchers and managers of these bycatch species.

MATERIALS AND METHODS

Simulation of fishery dynamics was carried out using state-
space age-structured OMs included in DLMtool (Carruthers and
Hordyk, 2018) and MSEtool (Carruthers et al., 2018), an open-
source package developed within the R environment for efficient
closed-loop evaluation of fishery management procedures. MSE
closed-loop testing is presented here basically following the
guidelines of Punt et al. (2016).

Operating Model (OM)
A state-space age-structured model is used in the OM (Carruthers
et al., 2018). This model is fitted to an index of biomass and
catch-at-age composition data (for details on how these data
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are simulated in closed-loop testing, see Carruthers and Hordyk,
2018) and estimates time-invariant selectivity and process error
in the form of recruitment deviations.

Operating model is set up based on the stock assessment
materials from 2017 IOTC 15th Working Party on Billfish
(WPB15) (Wang, 2017). All errors from the original assessment
are moved to make a “clean” base case OM and we assume that
this situation is the best case that we can achieve in the real world.

Life history and fishing parameters were based on the
maximum-likelihood estimates from the stock assessments, with
modifications to provide greater generality in the interpretation
of results. Where values were estimated for both sexes, the female
parameters were used.

Catch and index information is the most common input as
the fisheries-independent data in fisheries study; hence, we set up
the OM with modified catch and index error and bias, which are
as follows: log-normal annual catch observation error σC (Cobs),
log-normal annual index observation error σI (Iobs), and bias
factor for annual catch observations bC (Cbias). We also chose
the bias factor for the observed natural mortality rate bM (Mbias),
the bias factor in the observed von Bertalanffy growth parameter
K bK (Kbias), and the bias factor in the observed maximum length
bLinf (Linfbias) as representing fisheries-dependent data in the
study. The sample size of catch-at-age observation (CAA_samp)
is also chosen to be tested as it is informative on stock structure
and could provide special information in MSE.

Where we focus on in this study is

Ĉi,y = bC,iεC,i,yCi,y

εC ∼ rlnorm (1, σC)

Îi,y = bI,iεI,i,yIi,y

εI ∼ rlnorm (1, σI)

where Ĉi,y and Ci,y are the observed and simulated catch of
simulation i in year y, respectively. bC is the bias factor in the
catch, and εC,i,y is a log-normal distributed catch observation
error of simulation i in year y. Îi,y and Ii,y are the observed and
simulated catch of simulation i in year y, respectively. bI is the
bias factor in the index, and εI,i,y is a log-normal distributed index
observation error of simulation i in year y.

For natural mortality M, maximum body length Linf, and
growth parameter K, biases were just implemented as a factor
similar to bC, simulated as follows:

M̂i = bMMi

K̂i = bKKi

Ĉi = bCCi

L̂inf i = bLinf Linf i

where Mi, Ki, Ci, and Linf i are the simulated natural mortality,
the von Bertalanffy growth parameter K, the annual catch, and the
maximum length in simulation i, and M̂i, K̂i, Ĉi, and L̂inf i are the
corresponding observations. Bias b is a factor (Figure 1B), and
the error is a log-normal error term with mean 1 and coefficient
of variation (CV) determined by M, K, C, and Linf.

Parameter Settings
Seven parameters are tested for the VOI in this case study
including Cobs, Iobs, Cbias, Mbias, Kbias, Linfbias, and
CAA_nsamp. All parameters are expressed with their lower and
upper bounds (Table 1).

(0.05, 0.15) is applied to σC and σI , (4/5, 5/4) is applied to
bC and bLinf, and (2/3, 3/2) is applied to bM and bK. (10, 1000)
is applied to CAA_nsamp. Low error/bias represents the lower
bound of the parameters, while high error/bias represents the
upper bound of the parameters. Real catch is a stochastic time-
series catch with a rising trend. Yields with errors or biases
applied are shown in Figure 1.

Parameters are tested independently, which means there is
only one changing variable in each MSE run without other errors
in the simulation system so that VOI results are generated in a
“clean” environment.

Management Strategy Evaluation (MSE)
For VOI testing, management procedures SCA_MSY,
SCA_75MSY, and SCA_4010 were applied to run the MSE
in this study. These three data-rich management procedures are
based on statistical catch-at-age (SCA) stock assessment with
MSY, 75%MSY, and 40–10 harvest control rules, respectively
(Carruthers et al., 2018), in which catch = MSY, catch = 75%MSY,
and 40–10 HCRs are used in fisheries management. These
assessment-based MPs were chosen from nine data-rich MPs
based on SCA, delay difference, and surplus production methods
as catch-at-age data generated from the observation model
were used when running SCA-based MPs. Nine iterations of
parameter values between lower and upper bounds were applied
with 128 simulations when running the MSE. Long-term yield
was calculated under a 50-year projection. The average yield was
rescaled as the relative yield using the yield in the last 10 years.
The mean trend of each simulation for every individual MP was
calculated, and the trend of each simulation was also calculated
in terms of the three MPs.

RESULTS

Different observations could be seen when MSE runs were
performed with different parameter settings associated with the
three data-rich MPs.

Cobs and Iobs
Simulation tests of Cobs and Iobs converged well, and
the patterns showed that not much information value was
necessary. When the parameter Cobs was tested, the majority
of simulations with all three MPs were concentrated around
the line representing a relative yield equal to 1 with only a
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FIGURE 1 | Parameter performance with time-series data. (A) Annual catch/index observation error distribution in low (0.05), medium (0.1), and high (0.15) level.
(B) Simulated real catch with low (0.05), medium (0.1), and high (0.15) level observation error. (C) Catch level with low (4/5), medium (1), and high (5/4) level bias in
Cbias and Linfbias. (D) Catch level with low (2/3), medium (1), and high (3/2) level bias in Mbias and Kbias.

TABLE 1 | Parameter settings in striped marlin case study.

Parameters Code Description Low Medium High

σC

σI

Cobs
Iobs

Log-normal annual observation error
(expressed as a coefficient of variation)

0.05 0.1 0.15

bC

bLinf

Cbias
Linfbias

Bias factor in observed catch
(all simulations, all years)

4/5 1 5/4

bM

bK

Mbias
Kbias

Bias factor in observed catch
(all simulations, all years)

2/3 1 3/2

CAA_nsamp CAA_nsamp Number of catch-at-age observation per time step 10 500 1000

Cbias, bias factor for annual catch observations; Mbias, bias factor for observed natural mortality rate; Kbias, bias factor in observed von Bertalanffy growth parameter K;
Linfbias, bias factor in observed maximum length; Cobs, log-normal annual catch observation error; Iobs, log-normal annual index observation error.

few noise bumps mostly between 0.5 and 1.5 (Figure 2, upper
row). Compared with Cobs, there were even less noises when
parameter Iobs was run; almost all 128 simulations converged
toward yield equal to 1 (Figure 2, lower panel). Above all,
simulations in testing of parameters Cobs and Iobs are stationary
and concentrated and hence had no influence on the final relative
yield. We could barely get any useful VOI from Cobs and
Iobs since the relative yield did not change a lot within the
parameter range.

Cbias and Linfbias
Contrary to the parameters Cobs and Iobs that had tendency to
converge toward yield equal to 1 after simulation runs, Cbias and
Linfbias apparently had a broader distribution range diverging in
most simulation cases from yield equal to 1. In fact, parameter
Cbias had higher values of relative yield for lower bias factors
(<0.9), in most simulations, then gradually converging toward
the yield range (0.6–1) for bias factors greater than 0.9 (Figure 3,
upper row). Regarding the parameter Linfbias, simulation runs
showed fluctuating changes in the relative yield; very high yields
were seen at lower bias values for most simulations and for

all three MPs, then dropping drastically and staying constant
to yield ranges between 0.5 and 1, for bias values superior to
0.95. The three MPs looked alike for most cases except for
the noises observed at the beginning of SCA_4010 representing
the lower bias values. For both parameters, we observed the
necessity of more information value for higher relative yields
when parameter values are low.

Mbias and Kbias
The results of these two bias factors, Mbias and Kbias, were quite
similar with that of Linfbias. With a similar high relative yield at
the beginning, it gradually drops to a relative yield equal to 1 then
below 1 and constant in the range between 0.5 and 1 for both
parameters Mibas and Kbias (Figure 4). Looking into details,
simulations with the three MPs in Mbias are nearly exactly the
same as that in Kbias.

CAA_nsamp
The parameter of the catch-at-age sample size was a bit different
from the other parameters tested in this study. It is not controlled
throughout a bias nor error but directly by the number of the
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FIGURE 2 | Results of 128 simulations of the parameters Cobs and Iobs with three MPs.

FIGURE 3 | Results of 128 simulations of the parameters Cbias and Linfbias with three MPs.

catch-at-age sample. The result shows that the relative yield was
very sensitive to CAA_nsamp at the first iteration, especially at
the very beginning of the interval (Figure 5). Then the relative
yield goes back to 1 and stays stationary at 1 until the end of
the interval. It converged well after the first interval at a relative
yield equal to 1.

Mean Trend
The mean trends of the seven parameters over MPs SCA_MSY,
SCA_75MSY, and SCA_4010 are summarized in Figure 6.

Generally, the mean trend of Cbias, Cobs, CAA_nsamp, and
Iobs looks similar, whereas Linfbias, Mbias, and Kbias share
a similar shape. These three parameters (Linfbias, Mbias, and
Kbias) as observed in Figure 6 simply show their impact on
the final relative yield, since they cause the yield to drop from
their expected values to lower values (relative yield < 1). For
Cbias, Cobs, CAA_nsamp, and Iobs, the mean trend goes flat
and smoothly within the interval. Especially, an obvious drop
was observed at the beginning of CAA_nsamp, and we also
noticed that this drop started slightly above 1 in Cbias and
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FIGURE 4 | Results of 128 simulations of the parameters Mbias and Kbias with three MPs.

FIGURE 5 | Results of 128 simulations of the parameter CAA_nsamp with three MPs.

stayed constantly smooth throughout as from 1.2. Similar to
what it shows in simulation-specific plots, the mean trends of
Cobs and Iobs were quite flat and followed the line of a relative
yield equal to 1.

It is not surprising that the relative yield results of parameters
Mbias and Kbias were very close; both parameters started
around 1.5 and then dropped slowly and converged around
0.75. Especially, there is a platform at the beginning of
Linfbias in contrast to the rapid drop at the start interval of
Mbias and Kbias.

DISCUSSION

We notice that catch- and index-related parameters, including
Cbias, Cobs, and Iobs, provide a few information values as the
relative yield does not have distinct change within the parameter
interval. Similarly, but slightly different, there is a significant
but small signal in the first iteration, which reflects a strong
information value as the relative yield goes completely flat in
the following iterations. In the other three biases, Mbias, Kbias,
and Linfbias, it is clear that a great information value was
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FIGURE 6 | Mean trend of all parameters conducted with three MPs.

reflected as we can see in the mean trend plot (Figure 6).
Consequently, fisheries-dependent parameters, including Cobs,
Cbias, CAA_nsamp, and Iobs, tend to a flat trend of the relative
yield under the three MPs. Thus, there is a special interval in
CAA_nsamp that indicates a relatively huge information value
at the beginning. We also found a significant information value
in fisheries-independent parameters, such as Mbias, Kbias, and
Linfbias. Interestingly, with almost the same tendency from the
lower bound to the upper bound, the parameter value pulls the
relative yield from the very top at around 1.5 and then drops
rapidly and goes flat to the bottom.

Base-Case OM Settings
The base-case OM was set to represent the “best” data available
situation that we can achieve in reality. Simulation studies
conducted on a non-noised parameter will indicate the impact
of the changing variable. However, there could always be debates
on the ideal base-case OM. Questions may arise including the
following: Is it really the “best” available situation? How far is it
from our reality? What else can be the noise in our study based on
this model structure? There are lots of questions for us to answer.

In our base-case OM, natural mortality (M) was set to 0.45
and steepness (h) to 0.86. In the stock assessment performed by
Wang (2017), sensitivity analysis of M and h was conducted with
M values of 0.35 and 0.55, and h values of 0.75 and 0.95. However,
another stock assessment on striped marlin was performed by
Wang (2018) using the Stock Synthesis package in the Indian
Ocean; the author conducted a sensitivity analysis based on h
values of 0.4 and 0.5 and M values of 0.25, and an age-specific
M (controlled by the average M value).

In other studies, for instance, Parker et al. (2018) conducted
a stock assessment of striped marlin in IOTC-WPB16 using
the Bayesian State-Space Surplus Production Model software,
JABBA. In their study, the reference steepness used was 0.5 with a
sensitivity analysis of lower value 0.4 and higher value 0.86, while
admitting reasonable uncertainty about the natural mortality M.

In the present study, for simulation test progress, individual
values of information of each parameter were tested under the
environment denoted “clean” and “perfect” operation models.
So the results obtained are based on the assumption that the
OM settings are constantly perfect. As a result, we only tested
a single parameter at one time without any noises from other
parameters, which is obviously non-existent in real fisheries.
Nevertheless, in this preliminary study, we are still using the
single-parameter testing system, as what we actually focus on
is the impact of a single parameter rather than the synergistic
effect. And we clearly got the valuable result that individual
fisheries-independent parameters and the catch-at-age sample
size are more informative than fisheries-dependent information.
This could be the fundamental theory in VOI study in fisheries,
and more studies on the information from other aspects could be
done based on our research.

As we all know, uncertainties are glued together and always
appear at the same time. Thus, future works should be
geared toward multi-impact parameter simulation tests to detect
interactions within uncertainties.

Impacts of Information Values
The importance of the quantity of fisheries data has been
increasingly realized in fisheries stock assessments and
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MSEs (Restrepo and Powers, 1999). As an analysis on
VOI for management, we focused mostly on the most
effective information contributing to the management
process. The parameters in our simulation tests, which
provided large efforts in management, could also be
important in stock assessment works, especially fisheries-
independent parameters such as Mbias, Kbias, and Linfbias.
The information brought from these parameters would
be helpful in life history, growth, and species movement
studies. A study by Johnson et al. (2015) suggested that
in order to design better studies using simulation tests,
accurate estimates of sample sizes would be more helpful than
conventional power analysis and be reasonably straightforward
to use so as to justify the extra time and effort required
for the simulation.

Obviously, an optimum sample size is necessarily important
in management case studies. Using an appropriate sample
size will effectively save effort put in data collection, such as
money and time. In the perspective of fisheries management,
we suggest that more effort should be put on data reporting
and information collection for a fisheries-independent sampling
approach. Apparently, Mbias, Kbias, and Linfbias are relatively
more important derivers on yield compared with Cobs, Cbias,
Iobs, and CAA_nsamp. Therefore, some actions should be done
in the current data collecting system, for instance, cut down
the number of catch-at-age data and set a lower bound of 134
individuals due to the inflection point in the study (Figure 5).
We found that Mbias, Kbias, and Linfbias derived yields in
exactly the same way, that is, a half higher yield with low
bias and, on the other hand, a quarter lower yield with high
bias (Figure 6).

Chen et al. (2003) evaluated the impact of data quantity
to fisheries and reported that the lack of sufficient data may
lead to relatively higher steepness with higher uncertainty
(wider distribution). According to Chen et al. (2003), a
difference index of parameter mean reached +40.5% and
a difference index of standard deviation reached extremely
high values of +778.5%, which could definitely bring the
yield to a completely different level, such as hyperdepletion
or hyperstability. However, in Chen et al. (2003), natural
mortality estimation was also driven by data quality, which,
in turn, fluctuated the mean value (from -18 to +50%)
with a wide standard deviation distribution (+3.3 to 112.0%).
From the perspective of yield-expected management, this
variance would drop the yield by 50% from the highest
estimation to the lowest.

Regarding the use of abundance index data, Schnute (1985)
and Maunder and Punt (2004) raised debates as to what
type of data is appropriate to use; questions such as whether
to use fisheries-independent data such as surveys or to use
fisheries-dependent data such as information from commercial
or recreational fisheries were raised. From our point of view,
we observed that catch or abundance index data did not
cause yield results to fluctuate. Therefore, we suggest that both
fisheries-independent and -dependent data may be used for stock
assessment and management, and that these data types may
not bring severe impact on yield results. However, our study

showed that bias in catch and index data were not the main
drivers of yield fluctuations; it could probably also depend on the
fisheries type and MPs.

The number of catch-at-age samples is always a huge
challenge for bycatch species (Pelletier and Gros, 1991). The
final result, i.e., the yield, is emphasized, rather than the
intermediate VPA result, i.e., the fishing mortality, as stressed
in a previous study by Pelletier and Gros (1991); the yield per
recruit is less sensitive to catch than the VPA result. Hence,
the CV of fishing mortality is approximately equal to those
of catch estimators, whereas the yield variance is lower than
the input catch-at-age error. Consequently, the uncertainty due
to catch is moderate, and the CVs of the yield range are
between 8 and 15%.

Fournier and Archibald (1982) suggested that catch-at-age
data should not be produced without considering the final
use to which they will be put. If the final use is an age-
structured model, then aging a large number of older fish
accurately may not only be a waste of money and effort
but could also degrade the quality of the estimates obtained
from the age-structured model. Similarly, in our study, age-
structured catch data are necessary but only in a relatively
low level. Too much effort put on catch-at-age data collection
could be a waste of both money and time, as mentioned by
Fournier and Archibald (1982).

In our base-case OM, the number of catch-at-age samples was
set between 500 and 600 with the aim to remove the impact of the
lacking age-structured catch data. On the other hand, in Wang’s
stock assessment (Wang, 2017), the catch-at-age number was set
between 100 and 200, which is quite close to the result we got
at 134. Consequently, a large sample size of catch-at-age data is
determined to be a waste of time and effort. However, this could
also depend on age-based selectivity and vulnerability of the stock
(Linton and Bence, 2011).

Future Data Collection
As computer-intensive technology and statistical methods evolve,
an increase in attention is now being paid on the quality
of the data collected for fisheries analyses. There are huge
efforts put on global marine fisheries catch reconstruction.
Pauly and Zeller (2016) described the source of catch into
three contents: foreign fishing, industrially catch, and small-scale
fisheries and suggested to put more effort on small-scale fisheries
data collection. Based on the VOI analysis results obtained in
this study, Cbias and Cobs show that the huge effort put on
data collection could possibly have tiny contribution to our
management. Nevertheless, Pauly and Zeller (2016) also found
that reconstructed global catches between 1950 and 2010 were
50% higher than the FAO dataset and are declining rapidly
since catches peaked in the 1990s, which also indicates that data
collecting is still necessary in the perspective of global fishing
status analysis.

The quantity of fisheries data can have a profound impact on
the quality of stock assessment (Chen et al., 2003). Realistically,
information has various availabilities in terms of data type or
even fisheries status. A valuable fishery tends to have fisheries-
independent and -dependent information collected for many
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fisheries variables with long time series, while a less valuable
fishery, however, often has limited information collected. The
optimum data size for the two fisheries could be very different, so
we should implement this VOI analysis on more different types of
fishery to find the best guidance of fishery-specific data collection.

Data collected from commercial fishery represent different
characteristics of the stock than data collected by scientific
surveys. Data collected from a well-defined fisheries-independent
survey tend to be unbiased and representative of the targeted
fish stock and are thus considered more reliable than the
data collected from commercial fisheries (Hilborn and Walters,
1992). It is thus important to improve data quantity and
collect fisheries-independent data, which often are more reliable
than data collected from commercial fisheries. In our case
study, fisheries-independent data such as Kbias, Mbias, Linfbias,
etc., bring more impact on yield than fisheries-dependent
information including Cbias, Cobs, and Iobs, which support the
point of view above.

More complex cost models of observation processes are
needed by managers to account for overhead costs of certain
operations (survey boats, launches, and crew) and then account
for prorated data collection costs (e.g., survey days at sea).
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